SAFETY DATA SHEET

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name: Lincolnweld® LA-85 (LNS 165)
Product Size: 1/8" (3.2 mm)

Other means of identification
SDS number: 200000000436

Recommended use and restriction on use
Recommended use: SAW (Submerged Arc Welding)
Restrictions on use: Not known. Read this SDS before using this product.

Manufacturer/Importer/Supplier/Distributor Information
Company Name: The Lincoln Electric Company
Address: 22801 Saint Clair Avenue
 Cleveland, Ohio 44117
 USA
Telephone: +1 (216) 481-8100
Contact Person: Safety Data Sheet Questions: www.lincolnelectric.com/sds
 Arc Welding Safety Information: www.lincolnelectric.com/safety

Company Name: The Lincoln Electric Company of Canada LP
Address: 179 Wicksteed Avenue
 Toronto, Ontario M4G 2B9
 Canada
Telephone: +1 (416) 421-2600
Contact Person: Safety Data Sheet Questions: www.lincolnelectric.com/sds
 Arc Welding Safety Information: www.lincolnelectric.com/safety

Emergency telephone number:
USA/Canada/Mexico +1 (888) 609-1762
Americas/Europe +1 (216) 383-8962
Asia Pacific +1 (216) 383-8966
Middle East/Africa +1 (216) 383-8969

3E Company Access Code: 333988

2. HAZARDS IDENTIFICATION

Hazard Classification
Not classified as hazardous according to applicable GHS hazard classification criteria.

Label Elements

Hazard Symbol: No symbol
Signal Word: No signal word.
Hazard Statement: Not applicable
Precautionary: Not applicable
Statements:

Other hazards which do not result in GHS classification: Electrical Shock can kill. If welding must be performed in damp locations or with wet clothing, on metal structures or when in cramped positions such as sitting, kneeling or lying, or if there is a high risk of unavoidable or accidental contact with work piece, use the following equipment: Semiautomatic DC Welder, DC Manual (Stick) Welder, or AC Welder with Reduced Voltage Control.

Arc rays can injure eyes and burn skin. Welding arc and sparks can ignite combustibles and flammable materials. Overexposure to welding fumes and gases can be hazardous. Read and understand the manufacturer’s instructions, Safety Data Sheets and the precautionary labels before using this product. Refer to Section 8.

Substance(s) formed under the conditions of use: The welding fume produced from this welding electrode may contain the following constituent(s) and/or their complex metallic oxides as well as solid particles or other constituents from the consumables, base metal, or base metal coating not listed below.

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>CAS-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>124-38-9</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>630-08-0</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>10102-44-0</td>
</tr>
<tr>
<td>Ozone</td>
<td>10028-15-6</td>
</tr>
</tbody>
</table>

3. COMPOSITION / INFORMATION ON INGREDIENTS

Reportable Hazardous Ingredients Mixtures

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>CAS number</th>
<th>Content in percent (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>7439-89-6</td>
<td>50 - <100%</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td>1 - <5%</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440-02-0</td>
<td>0.1 - <1%</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>7439-98-7</td>
<td>0.1 - <1%</td>
</tr>
<tr>
<td>Silicon</td>
<td>7440-21-3</td>
<td>0.1 - <1%</td>
</tr>
</tbody>
</table>

* All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

Composition Comments: The term “Hazardous Ingredients” should be interpreted as a term defined in Hazard Communication standards and does not necessarily imply the existence of a welding hazard. The product may contain additional non-hazardous ingredients or may form additional compounds under the condition of use. Refer to Sections 2 and 8 for more information.

4. FIRST AID MEASURES

Ingestion: Avoid hand, clothing, food, and drink contact with fluxes, metal fume or powder which can cause ingestion of particulate during hand to mouth activities such as drinking, eating, smoking, etc. If ingested, do not induce vomiting. Contact a poison control center. Unless the poison control center advises otherwise, wash out mouth thoroughly with water. If symptoms develop, seek medical attention at once.
Inhalation: Move to fresh air if breathing is difficult. If breathing has stopped, perform artificial respiration and obtain medical assistance at once.

Skin Contact: Remove contaminated clothing and wash the skin thoroughly with soap and water. For reddened or blistered skin, or thermal burns, obtain medical assistance at once.

Eye contact: Dust or fume from this product should be flushed from the eyes with copious amounts of clean, tepid water until transported to an emergency medical facility. Do not allow victim to rub or keep eyes tightly closed. Obtain medical assistance at once.

Arc rays can injure eyes. If exposed to arc rays, move victim to dark room, remove contact lenses as necessary for treatment, cover eyes with a padded dressing and rest. Obtain medical assistance if symptoms persist.

Most important symptoms/effects, acute and delayed
Symptoms: Short-term (acute) overexposure to fumes and gases from welding and allied processes may result in discomfort such as metal fume fever, dizziness, nausea, or dryness or irritation of nose, throat, or eyes. May aggravate pre-existing respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to fumes and gases from welding and allied processes can lead to siderosis (iron deposits in lung), central nervous system effects, bronchitis and other pulmonary effects. Refer to Section 11 for more information.

Hazards: The hazards associated with welding and its allied processes such as soldering and brazing are complex and may include physical and health hazards such as but not limited to electric shock, physical strains, radiation burns (eye flash), thermal burns due to hot metal or spatter and potential health effects of overexposure to fumes, gases or dusts potentially generated during the use of this product. Refer to Section 11 for more information.

Indication of immediate medical attention and special treatment needed
Treatment: Treat symptomatically.

5. FIRE-FIGHTING MEASURES

General Fire Hazards: As shipped, this product is nonflammable. However, welding arc and sparks as well as open flames and hot surfaces associated with brazing and soldering can ignite combustible and flammable materials. Read and understand American National Standard Z49.1, “Safety in Welding, Cutting and Allied Processes” and National Fire Protection Association NFPA 51B, “Standard for Fire Prevention during Welding, Cutting and Other Hot Work” before using this product.

Suitable (and unsuitable) extinguishing media
Suitable extinguishing media: As shipped, the product will not burn. In case of fire in the surroundings: use appropriate extinguishing agent.

Unsuitable extinguishing media: Do not use water jet as an extinguisher, as this will spread the fire.

Specific hazards arising from the chemical: Welding arc and sparks can ignite combustibles and flammable products.
Special protective equipment and precautions for firefighters

Special fire fighting procedures: Use standard firefighting procedures and consider the hazards of other involved materials.

Special protective equipment for fire-fighters: Selection of respiratory protection for fire fighting; follow the general fire precautions indicated in the workplace. Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures: If airborne dust and/or fume is present, use adequate engineering controls and, if needed, personal protection to prevent overexposure. Refer to recommendations in Section 8.

Methods and material for containment and cleaning up: Absorb with sand or other inert absorbent. Stop the flow of material, if this is without risk. Clean up spills immediately, observing precautions in the personal protective equipment in Section 8. Avoid generating dust. Prevent product from entering any drains, sewers or water sources. Refer to Section 13 for proper disposal.

Environmental Precautions: Avoid release to the environment. Prevent further leakage or spillage if safe to do so. Do not contaminate water sources or sewer. Environmental manager must be informed of all major spillages.

7. HANDLING AND STORAGE

Precautions for safe handling: Prevent formation of dust. Provide appropriate exhaust ventilation at places where dust is formed.

Conditions for safe storage, including any incompatibilities: Store in closed original container in a dry place. Store in accordance with local/regional/national regulations. Store away from incompatible materials.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Control Parameters

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese - Fume, - as Mn</td>
<td>Ceiling</td>
<td>5 mg/m³</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)</td>
</tr>
<tr>
<td></td>
<td>REL</td>
<td>1 mg/m³</td>
<td>US. NIOSH; Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td></td>
<td>STEL</td>
<td>3 mg/m³</td>
<td>US. NIOSH; Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td>Manganese - Inhalable fraction, - as Mn</td>
<td>TWA</td>
<td>0.1 mg/m³</td>
<td>US. ACGIH Threshold Limit Values (03 2014)</td>
</tr>
<tr>
<td>Manganese - Respirable fraction, - as Mn</td>
<td>TWA</td>
<td>0.02 mg/m³</td>
<td>US. ACGIH Threshold Limit Values (03 2014)</td>
</tr>
<tr>
<td>Nickel - Inhalable fraction.</td>
<td>TWA</td>
<td>1.5 mg/m³</td>
<td>US. ACGIH Threshold Limit Values (12 2010)</td>
</tr>
<tr>
<td>Nickel - as Ni</td>
<td>PEL</td>
<td>1 mg/m³</td>
<td>US. OSHA Table Z-1 Limits for Air</td>
</tr>
</tbody>
</table>
Contaminants (29 CFR 1910.1000) (02 2006)

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molybdenum - Total dust. - as Mo</td>
<td>REL</td>
<td>0.015 mg/m³</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td>Molybdenum - Total dust. - as Mo</td>
<td>PEL</td>
<td>15 mg/m³</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)</td>
</tr>
<tr>
<td>Molybdenum - Inhalable fraction. - as Mo</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>US. ACGIH Threshold Limit Values (03 2014)</td>
</tr>
<tr>
<td>Molybdenum - Respirable fraction. - as Mo</td>
<td>TWA</td>
<td>3 mg/m³</td>
<td>US. ACGIH Threshold Limit Values (03 2014)</td>
</tr>
<tr>
<td>Silicon - Total dust.</td>
<td>PEL</td>
<td>15 mg/m³</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)</td>
</tr>
<tr>
<td>Silicon - Respirable fraction.</td>
<td>PEL</td>
<td>5 mg/m³</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)</td>
</tr>
<tr>
<td>Silicon - Respirable.</td>
<td>REL</td>
<td>5 mg/m³</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td>Silicon - Total</td>
<td>REL</td>
<td>10 mg/m³</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
</tbody>
</table>

Occupational Exposure Limits: Canada

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese - as Mn</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td>Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (07 2009)</td>
</tr>
<tr>
<td>Manganese - as Mn</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (07 2007)</td>
</tr>
<tr>
<td>Manganese - as Mn</td>
<td>8 HR ACL</td>
<td>0.2 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Manganese - as Mn</td>
<td>15 MIN ACL</td>
<td>0.6 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Manganese - Respirable fraction. - as Mn</td>
<td>TWA</td>
<td>0.02 mg/m³</td>
<td>Canada. Manitoba OELs (Reg. 217/2006, The Workplace Safety And Health Act) (03 2014)</td>
</tr>
<tr>
<td>Manganese - Inhalable fraction. - as Mn</td>
<td>TWA</td>
<td>0.1 mg/m³</td>
<td>Canada. Manitoba OELs (Reg. 217/2006, The Workplace Safety And Health Act) (03 2014)</td>
</tr>
<tr>
<td>Manganese - as Mn</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (06 2015)</td>
</tr>
<tr>
<td>Manganese - Fume, total dust. - as Mn</td>
<td>TWA</td>
<td>0.2 mg/m³</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
</tr>
<tr>
<td>Nickel</td>
<td>TWA</td>
<td>1.5 mg/m³</td>
<td>Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (07 2009)</td>
</tr>
<tr>
<td>Nickel</td>
<td>TWA</td>
<td>0.05 mg/m³</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (05 2013)</td>
</tr>
<tr>
<td>Nickel - Inhalable fraction.</td>
<td>TWA</td>
<td>1.5 mg/m³</td>
<td>Canada. Manitoba OELs (Reg. 217/2006, The Workplace Safety And Health Act) (03 2011)</td>
</tr>
<tr>
<td>Nickel - Inhalable fraction. - as Ni</td>
<td>8 HR ACL</td>
<td>1.5 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Nickel - Inhalable fraction. - as Ni</td>
<td>15 MIN ACL</td>
<td>3 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Nickel</td>
<td>TWA</td>
<td>1 mg/m³</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (06 2015)</td>
</tr>
<tr>
<td>Chemical Identity</td>
<td>Type</td>
<td>Exposure Limit Values</td>
<td>Source</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Nickel</td>
<td>TWA</td>
<td>1 mg/m³</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
</tr>
<tr>
<td>Molybdenum - Inhalable</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (07 2007)</td>
</tr>
<tr>
<td>Molybdenum - Respirable.</td>
<td>TWA</td>
<td>3 mg/m³</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (07 2007)</td>
</tr>
<tr>
<td>Molybdenum - Inhalable fraction. - as Mo</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (11 2010)</td>
</tr>
<tr>
<td>Molybdenum - Respirable fraction. - as Mo</td>
<td>8 HR ACL</td>
<td>10 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Molybdenum - Inhalable fraction. - as Mo</td>
<td>8 HR ACL</td>
<td>3 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Molybdenum - Inhalable fraction. - as Mo</td>
<td>15 MIN ACL</td>
<td>20 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Molybdenum - Respirable fraction. - as Mo</td>
<td>15 MIN ACL</td>
<td>6 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Molybdenum - Inhalable fraction. - as Mo</td>
<td>TWA</td>
<td>3 mg/m³</td>
<td>Canada. Manitoba OELs (Reg. 217/2006, The Workplace Safety And Health Act) (03 2014)</td>
</tr>
<tr>
<td>Molybdenum - Respirable fraction. - as Mo</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>Canada. Manitoba OELs (Reg. 217/2006, The Workplace Safety And Health Act) (03 2014)</td>
</tr>
<tr>
<td>Molybdenum - Respirable fraction. - as Mo</td>
<td>TWA</td>
<td>3 mg/m³</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (06 2015)</td>
</tr>
<tr>
<td>Molybdenum - as Mo</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
</tr>
<tr>
<td>Silicon - Total dust.</td>
<td>TWA</td>
<td>10 mg/m³</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (07 2010)</td>
</tr>
<tr>
<td>Silicon</td>
<td>8 HR ACL</td>
<td>10 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
<tr>
<td>Silicon - Total dust.</td>
<td>15 MIN ACL</td>
<td>20 mg/m³</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
</tr>
</tbody>
</table>

Occupational Exposure Limits: Mexico

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron - as Fe</td>
<td>VLE-PPT</td>
<td>1 mg/m³</td>
<td>Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)</td>
</tr>
<tr>
<td>Manganese - as Mn</td>
<td>VLE-PPT</td>
<td>0.2 mg/m³</td>
<td>Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)</td>
</tr>
<tr>
<td>Nickel - Inhalable fraction. - as Ni</td>
<td>VLE-PPT</td>
<td>1.5 mg/m³</td>
<td>Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)</td>
</tr>
<tr>
<td>Molybdenum - Respirable fraction. - as Mo</td>
<td>VLE-PPT</td>
<td>0.5 mg/m³</td>
<td>Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)</td>
</tr>
</tbody>
</table>
Additional exposure limits under the conditions of use: US

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>TWA</td>
<td>5,000 ppm</td>
<td>US. ACGIH Threshold Limit Values (2010)</td>
</tr>
<tr>
<td></td>
<td>STEL</td>
<td>30,000 ppm</td>
<td>US. ACGIH Threshold Limit Values (2010)</td>
</tr>
<tr>
<td></td>
<td>PEL</td>
<td>5,000 ppm 9,000 mg/m3</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (2006)</td>
</tr>
<tr>
<td></td>
<td>STEL</td>
<td>30,000 ppm 54,000 mg/m3</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td></td>
<td>REL</td>
<td>5,000 ppm 9,000 mg/m3</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>TWA</td>
<td>25 ppm</td>
<td>US. ACGIH Threshold Limit Values (2010)</td>
</tr>
<tr>
<td></td>
<td>PEL</td>
<td>50 ppm 55 mg/m3</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (2006)</td>
</tr>
<tr>
<td></td>
<td>REL</td>
<td>35 ppm 40 mg/m3</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td></td>
<td>Ceil_Time</td>
<td>200 ppm 229 mg/m3</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>TWA</td>
<td>0.2 ppm</td>
<td>US. ACGIH Threshold Limit Values (2012)</td>
</tr>
<tr>
<td></td>
<td>Ceiling</td>
<td>5 ppm 9 mg/m3</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (2006)</td>
</tr>
<tr>
<td></td>
<td>STEL</td>
<td>1 ppm 1.8 mg/m3</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td>Ozone</td>
<td>PEL</td>
<td>0.1 ppm 0.2 mg/m3</td>
<td>US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (2006)</td>
</tr>
<tr>
<td></td>
<td>Ceil_Time</td>
<td>0.1 ppm 0.2 mg/m3</td>
<td>US. NIOSH: Pocket Guide to Chemical Hazards (2005)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>0.05 ppm</td>
<td>US. ACGIH Threshold Limit Values (2014)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>0.20 ppm</td>
<td>US. ACGIH Threshold Limit Values (2014)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>0.10 ppm</td>
<td>US. ACGIH Threshold Limit Values (2014)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>0.08 ppm</td>
<td>US. ACGIH Threshold Limit Values (2014)</td>
</tr>
</tbody>
</table>

Additional exposure limits under the conditions of use: Canada

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>STEL</td>
<td>30,000 ppm 54,000 mg/m3</td>
<td>Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (2009)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>5,000 ppm 9,000 mg/m3</td>
<td>Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (2009)</td>
</tr>
<tr>
<td></td>
<td>TWA</td>
<td>5,000 ppm</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (2007)</td>
</tr>
<tr>
<td></td>
<td>STEL</td>
<td>15,000 ppm</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (2007)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>STEL</td>
<td>30,000 ppm</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (11 2010)</td>
<td></td>
</tr>
<tr>
<td>TWA</td>
<td>5,000 ppm</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (11 2010)</td>
<td></td>
</tr>
<tr>
<td>8 HR ACL</td>
<td>5,000 ppm</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
<td></td>
</tr>
<tr>
<td>15 MIN ACL</td>
<td>30,000 ppm</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
<td></td>
</tr>
<tr>
<td>TWA</td>
<td>5,000 ppm</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
<td></td>
</tr>
<tr>
<td>STEL</td>
<td>30,000 ppm</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
<td></td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>TWA 25 ppm</td>
<td>29 mg/m3 Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (07 2009)</td>
<td></td>
</tr>
<tr>
<td>STEL</td>
<td>100 ppm</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (07 2007)</td>
<td></td>
</tr>
<tr>
<td>8 HR ACL</td>
<td>25 ppm</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
<td></td>
</tr>
<tr>
<td>15 MIN ACL</td>
<td>190 ppm</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
<td></td>
</tr>
<tr>
<td>TWA</td>
<td>35 ppm</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
<td></td>
</tr>
<tr>
<td>STEL</td>
<td>200 ppm</td>
<td>Canada. Quebec OELs. (Ministry of Labor - Regulation Respecting the Quality of the Work Environment) (09 2017)</td>
<td></td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>STEL 5 ppm</td>
<td>9.4 mg/m3 Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (07 2009)</td>
<td></td>
</tr>
<tr>
<td>TWA</td>
<td>3 ppm</td>
<td>5.6 mg/m3 Canada. Alberta OELs (Occupational Health & Safety Code, Schedule 1, Table 2) (07 2009)</td>
<td></td>
</tr>
<tr>
<td>CEILING</td>
<td>1 ppm</td>
<td>Canada. British Columbia OELs. (Occupational Exposure Limits for Chemical Substances, Occupational Health and Safety Regulation 296/97, as amended) (07 2007)</td>
<td></td>
</tr>
<tr>
<td>TWA</td>
<td>0.2 ppm</td>
<td>Canada. Manitoba OELs (Reg. 217/2006, The Workplace Safety And Health Act) (03 2012)</td>
<td></td>
</tr>
<tr>
<td>STEL</td>
<td>5 ppm</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (11 2010)</td>
<td></td>
</tr>
<tr>
<td>TWA</td>
<td>3 ppm</td>
<td>Canada. Ontario OELs. (Control of Exposure to Biological or Chemical Agents) (11 2010)</td>
<td></td>
</tr>
<tr>
<td>8 HR ACL</td>
<td>3 ppm</td>
<td>Canada. Saskatchewan OELs (Occupational Health and Safety Regulations, 1996, Table 21) (05 2009)</td>
<td></td>
</tr>
</tbody>
</table>
Additional exposure limits under the conditions of use: Mexico

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Type</th>
<th>Exposure Limit Values</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>VLE-CT</td>
<td>30,000 ppm</td>
<td>Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)</td>
</tr>
<tr>
<td></td>
<td>VLE-PPT</td>
<td>5,000 ppm</td>
<td>Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)</td>
</tr>
</tbody>
</table>
Carbon monoxide VLE-PPT 25 ppm Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)

Nitrogen dioxide VLE-PPT 0.2 ppm Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)

Ozone VLE-P 0.1 ppm Mexico. OELs. (NOM-010-STPS-2014 Chemical Pollutants at the Workplace; Assessment and Control) (04 2014)

Appropriate Engineering Controls

Ventilation: Use enough ventilation and local exhaust at the arc, flame or heat source to keep the fumes and gases from the worker’s breathing zone and the general area. Train the operator to keep their head out of the fumes. **Keep exposure as low as possible.**

Individual protection measures, such as personal protective equipment

General information:

Exposure Guidelines: To reduce the potential for overexposure, use controls such as adequate ventilation and personal protective equipment (PPE). Overexposure refers to exceeding applicable local limits, the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) or the Occupational Safety and Health Administration’s (OSHA) Permissible Exposure Limits (PELs). Workplace exposure levels should be established by competent industrial hygiene assessments. Unless exposure levels are confirmed to be below the applicable local limit, TLV or PEL, whichever is lower, respirator use is required. Absent these controls, overexposure to one or more compound constituents, including those in the fume or airborne particles, may occur resulting in potential health hazards. According to the ACGIH, TLVs and Biological Exposure Indices (BEIs) “represent conditions under which ACGIH believes that nearly all workers may be repeatedly exposed without adverse health effects.” The ACGIH further states that the TLV-TWA should be used as a guide in the control of health hazards and should not be used to indicate a fine line between safe and dangerous exposures. See Section 10 for information on constituents which have some potential to present health hazards. Welding consumables and materials being joined may contain chromium as an unintended trace element. Materials that contain chromium may produce some amount of hexavalent chromium (CrVI) and other chromium compounds as a byproduct in the fume. In 2018, the American Conference of Governmental Industrial Hygienists (ACGIH) lowered the Threshold Limit Value (TLV) for hexavalent chromium from 50 micrograms per cubic meter of air (50 µg/m³) to 0.2 µg/m³. At these new limits, CrVI exposures at or above the TLV may be possible in cases where adequate ventilation is not provided. CrVI compounds are on the IARC and NTP lists as posing a lung cancer and sinus cancer risk. Workplace conditions are unique and welding fume exposures levels vary. Workplace exposure assessments must be conducted by a qualified professional, such as an industrial hygienist, to determine if exposures are below applicable limits and to make recommendations when necessary for preventing overexposures.

Eye/face protection:

Wear helmet or use face shield with filter lens shade number 12 or darker for open arc processes — or follow the recommendations as specified in ANSI Z49.1, Section 4, based on your process and settings. No specific lens shade recommendation for submerged arc or electroslag processes. Shield others by providing appropriate screens and flash goggles.

Skin Protection

Hand Protection:

Wear protective gloves. Suitable gloves can be recommended by the glove supplier.
Other:

Protective Clothing: Wear hand, head, and body protection which help to prevent injury from radiation, open flames, hot surfaces, sparks and electrical shock. See Z49.1. At a minimum, this includes welder's gloves and a protective face shield when welding, and may include arm protectors, aprons, hats, shoulder protection, as well as dark substantial clothing when welding, brazing and soldering. Wear dry gloves free of holes or split seams. Train the operator not to permit electrically live parts or electrodes from contacting the skin . . . or clothing or gloves if they are wet. Insulate yourself from the work piece and ground using dry plywood, rubber mats or other dry insulation.

Respiratory Protection:

Keep your head out of fumes. Use enough ventilation and local exhaust to keep fumes and gases from your breathing zone and the general area. An approved respirator should be used unless exposure assessments are below applicable exposure limits.

Hygiene measures:

Do not eat, drink or smoke when using the product. Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Determine the composition and quantity of fumes and gases to which workers are exposed by taking an air sample from inside the welder's helmet if worn or in the worker's breathing zone. Improve ventilation if exposures are not below limits. See ANSI/AWS F1.1, F1.2, F1.3 and F1.5, available from the American Welding Society, www.aws.org.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance: Solid welding wire or rod.
Physical state: Solid
Form: Solid
Color: No data available.
Odor: No data available.
Odor threshold: No data available.
P.H: No data available.
Melting point/freezing point: No data available.
Initial boiling point and boiling range: No data available.
Flash Point: No data available.
Evaporation rate: No data available.
Flammability (solid, gas): No data available.
Upper/lower limit on flammability or explosive limits
Flammability limit - upper (%): No data available.
Flammability limit - lower (%): No data available.
Explosive limit - upper (%): No data available.
Explosive limit - lower (%): No data available.
Vapor pressure: No data available.
Vapor density: No data available.
Density: No data available.
Relative density: No data available.
Solubility(ies): No data available.
Solubility in water: No data available.
Solubility (other): No data available.
Partition coefficient (n-octanol/water): No data available.
Auto-ignition temperature: No data available.
Decomposition temperature: No data available.
Viscosity: No data available.

10. STABILITY AND REACTIVITY

Reactivity: The product is non-reactive under normal conditions of use, storage and transport.

Chemical Stability: Material is stable under normal conditions.

Possibility of hazardous reactions: None under normal conditions.

Conditions to avoid: Avoid heat or contamination.

Hazardous Decomposition Products:

Fumes and gases from welding and its allied processes such as brazing and soldering cannot be classified simply. The composition and quantity of both are dependent upon the metal to which the joining or hot work is applied, the process, procedure - and where applicable - the electrode or consumable used. Other conditions which also influence the composition and quantity of the fumes and gases to which workers may be exposed include: coatings on the metal being welded or worked (such as paint, plating, or galvanizing), the number of operators and the volume of the work area, the quality and amount of ventilation, the position of the operator's head with respect to the fume plume, as well as the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities.)

In cases where an electrode or other applied material is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 3. Decomposition products of normal operation include those originating from the volatilization, reaction, or oxidation of the materials shown in Section 3, plus those from the base metal and coating, etc., as noted above. Reasonably expected fume constituents produced during arc welding and brazing include the oxides of iron, manganese and other metals present in the welding consumable or base metal. Hexavalent chromium compounds may be in the welding or brazing fume of consumables or base metals which contain chromium. Gaseous and particulate fluoride may be in the fume of consumables or flux materials which contain fluoride. Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from the arc associated with welding.

11. TOXICOLOGICAL INFORMATION
General information: The International Agency for Research on Cancer (IARC) has determined welding fumes and ultraviolet radiation from welding are carcinogenic to humans (Group 1). According to IARC, welding fumes cause cancer of the lung and positive associations have been observed with cancer of the kidney. Also according to IARC, ultraviolet radiation from welding causes ocular melanoma. IARC identifies gouging, brazing, carbon arc or plasma arc cutting, and soldering as processes closely related to welding. Read and understand the manufacturer’s instructions, Safety Data Sheets and the precautionary labels before using this product.

Information on likely routes of exposure

Inhalation: Potential chronic health hazards related to the use of welding consumables are most applicable to the inhalation route of exposure. Refer to Inhalation statements in Section 11.

Skin Contact: Arc rays can burn skin. Skin cancer has been reported.

Eye contact: Arc rays can injure eyes.

Ingestion: Health injuries from ingestion are not known or expected under normal use.

Symptoms related to the physical, chemical and toxicological characteristics

Inhalation: Short-term (acute) overexposure to fumes and gases from welding and allied processes may result in discomfort such as metal fume fever, dizziness, nausea, or dryness or irritation of nose, throat, or eyes. May aggravate pre-existing respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to fumes and gases from welding and allied processes can lead to siderosis (iron deposits in lung), central nervous system effects, bronchitis and other pulmonary effects.

Information on toxicological effects

Acute toxicity (list all possible routes of exposure)

Oral

Product: Not classified

Specified substance(s):

Iron

LD 50 (Rat): 98.6 g/kg

Dermal

Product: Not classified

Inhalation

Product: Not classified

Repeated dose toxicity

Product: Not classified

Skin Corrosion/Irritation

Product: Not classified

Serious Eye Damage/Eye Irritation

Product: Not classified

Respiratory or Skin Sensitization

Product: Not classified

Carcinogenicity

Product: Arc rays: Skin cancer has been reported.
IARC Monographs on the Evaluation of Carcinogenic Risks to Humans:
Nickel Overall evaluation: 2B. Possibly carcinogenic to humans.

US. National Toxicology Program (NTP) Report on Carcinogens:
Nickel Reasonably Anticipated to be a Human Carcinogen.

No carcinogenic components identified

Germ Cell Mutagenicity
In vitro Product: Not classified

In vivo Product: Not classified

Reproductive toxicity Product: Not classified

Specific Target Organ Toxicity - Single Exposure
Product: Not classified

Specific Target Organ Toxicity - Repeated Exposure
Product: Not classified

Aspiration Hazard Product: Not classified

Other effects: Organic polymers may be used in the manufacture of various welding consumables. Overexposure to their decomposition byproducts may result in a condition known as polymer fume fever. Polymer fume fever usually occurs within 4 to 8 hours of exposure with the presentation of flu like symptoms, including mild pulmonary irritation with or without an increase in body temperature. Signs of exposure can include an increase in white blood cell count. Resolution of symptoms typically occurs quickly, usually not lasting longer than 48 hours.

Symptoms related to the physical, chemical and toxicological characteristics under the condition of use

Additional toxicological Information under the conditions of use:

Acute toxicity
Inhalation
Specified substance(s): Carbon dioxide LC Lo (Human, 5 min): 90000 ppm
Carbon monoxide LC 50 (Rat, 4 h): 1300 ppm
Nitrogen dioxide LC 50 (Rat, 4 h): 88 ppm
Ozone LC Lo (Human, 30 min): 50 ppm

Other effects: Carbon dioxide Asphyxia
Carbon monoxide Carboxyhemoglobinemia
Nitrogen dioxide Lower respiratory tract irritation

12. ECOLOGICAL INFORMATION

Ecotoxicity
Acute hazards to the aquatic environment:
Fish
Product: Not classified

Specified substance(s):
- Nickel (LC 50 (Fathead minnow (Pimephales promelas), 96 h): 2.916 mg/l)
- Molybdenum (LC 50 (Rainbow trout,donaldson trout (Oncorhynchus mykiss), 96 h): 800 mg/l)

Aquatic Invertebrates
Product: Not classified

Specified substance(s):
- Nickel (EC 50 (Water flea (Daphnia magna), 48 h): 1 mg/l)
- Manganese (EC 50 (Water flea (Daphnia magna), 48 h): 40 mg/l)

Chronic hazards to the aquatic environment:

Fish
- Product: Not classified

Aquatic Invertebrates
- Product: Not classified

Toxicity to Aquatic Plants
- Product: Not classified

Persistence and Degradability

Biodegradation
- Product: No data available.

Bioaccumulative potential

Bioconcentration Factor (BCF)
- **Product:** No data available.
 - **Specified substance(s):** Nickel
 - Zebra mussel (Dreissena polymorpha), Bioconcentration Factor (BCF): 5,000 - 10,000 (Lotic) Bioconcentration factor calculated using dry weight tissue conc

Mobility in soil:
- No data available.

13. DISPOSAL CONSIDERATIONS

General information: The generation of waste should be avoided or minimized whenever possible. When practical, recycle in an environmentally acceptable, regulatory compliant manner. Dispose of non-recyclable products in accordance with all applicable Federal, State, Provincial, and Local requirements.

Disposal instructions: Dispose of this material and its container to hazardous or special waste collection point.

Contaminated Packaging: Dispose of contents/container to an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.

14. TRANSPORT INFORMATION

DOT
- **UN Number:**
- **UN Proper Shipping Name:** NOT DG REGULATED
Transport Hazard Class(es)
 Class: NR
 Label(s): –
Packing Group: –
Marine Pollutant: No

IMDG
UN Number:
UN Proper Shipping Name: NOT DG REGULATED
Transport Hazard Class(es)
 Class: NR
 Label(s): –
 EmS No.: –
Packing Group: –
Marine Pollutant: No

IATA
UN Number:
Proper Shipping Name: NOT DG REGULATED
Transport Hazard Class(es)
 Class: NR
 Label(s): –
Packing Group: –
Marine Pollutant: No
Cargo aircraft only: Allowed.

TDG
UN Number:
UN Proper Shipping Name: NOT DG REGULATED
Transport Hazard Class(es)
 Class: NR
 Label(s): –
Packing Group: –
Marine Pollutant: No

15. REGULATORY INFORMATION

US Federal Regulations
TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)
 None present or none present in regulated quantities.

US. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)
 None present or none present in regulated quantities.

CERCLA Hazardous Substance List (40 CFR 302.4):

<table>
<thead>
<tr>
<th>Chemical Identity</th>
<th>Reportable quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>Included in the regulation but with no data values. See regulation for further details.</td>
</tr>
<tr>
<td>Nickel</td>
<td>100lbs.</td>
</tr>
</tbody>
</table>

Superfund Amendments and Reauthorization Act of 1986 (SARA)
Hazards categories
 Not classified
 Not classified

SARA 302 Extremely Hazardous Substance
 None present or none present in regulated quantities.
SARA 304 Emergency Release Notification

Chemical Identity	**Reportable quantity**
Manganese | Included in the regulation but with no data values. See regulation for further details.
Nickel | 100 lbs.

SARA 311/312 Hazardous Chemical

Chemical Identity	**Threshold Planning Quantity**
Iron | 10000 lbs
Manganese | 10000 lbs
Nickel | 10000 lbs
Molybdenum | 10000 lbs
Silicon | 10000 lbs

SARA 313 (TRI Reporting)

Chemical Identity	**Reporting threshold for other users**	**Reporting threshold for manufacturing and processing**
Manganese | 10000 lbs | 25000 lbs.
Nickel | 10000 lbs | 25000 lbs.

Clean Water Act Section 311 Hazardous Substances (40 CFR 117.3)

None present or none present in regulated quantities.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130):

None present or none present in regulated quantities.

US State Regulations

US. California Proposition 65

WARNING

Cancer - www.P65Warnings.ca.gov

WARNING: This product contains or produces a chemical known to the State of California to cause cancer and birth defects (or other reproductive harm). (California Health & Safety Code Section 25249.5 et seq.)

WARNING: Cancer and Reproductive Harm – www.P65Warnings.ca.gov

US. New Jersey Worker and Community Right-to-Know Act

Chemical Identity

Manganese
Nickel

US. Massachusetts RTK - Substance List

Chemical Identity

Nickel

US. Pennsylvania RTK - Hazardous Substances

Chemical Identity

Manganese
Nickel

US. Rhode Island RTK

No ingredient regulated by RI Right-to-Know Law present.

Canada Federal Regulations

List of Toxic Substances (CEPA, Schedule 1)

Not Regulated
Export Control List (CEPA 1999, Schedule 3)
Not Regulated

National Pollutant Release Inventory (NPRI)
Canada. National Pollutant Release Inventory (NPRI) Substances, Part 5, VOCs with Additional Reporting Requirements
NPRI PT5 Not Regulated

Canada. National Pollutant Release Inventory (NPRI) (Schedule 1, Parts 1-4)
NPRI Not Regulated

Greenhouse Gases
Not Regulated

Controlled Drugs and Substances Act
CA CDSI Not Regulated
CA CDSII Not Regulated
CA CDSIII Not Regulated
CA CDSIV Not Regulated
CA CDSV Not Regulated
CA CDSVII Not Regulated
CA CDSVIII Not Regulated

Precursor Control Regulations
Not Regulated

Mexico. Substances subject to reporting for the pollutant release and transfer registry (PRTR): Not applicable

Inventory Status:
Australia AICS: On or in compliance with the inventory
Canada DSL Inventory List: On or in compliance with the inventory
EINECS, ELINCS or NLP: On or in compliance with the inventory
Japan (ENCS) List: One or more components are not listed or are exempt from listing.
China Inv. Existing Chemical Substances: On or in compliance with the inventory
Korea Existing Chemicals Inv. (KECI): On or in compliance with the inventory
Canada NDSL Inventory: One or more components are not listed or are exempt from listing.
Philippines PICCS: On or in compliance with the inventory
US TSCA Inventory: On or in compliance with the inventory
New Zealand Inventory of Chemicals: On or in compliance with the inventory
Japan ISHL Listing: One or more components are not listed or are exempt from listing.
Japan Pharmacopoeia Listing: One or more components are not listed or are exempt from listing.
Mexico INSQ: On or in compliance with the inventory
Ontario Inventory: On or in compliance with the inventory
Taiwan Chemical Substance Inventory: On or in compliance with the inventory

16. OTHER INFORMATION

Definitions:

Revision Date: 10/04/2018

Further Information: Additional information is available by request.
Disclaimer:
The Lincoln Electric Company urges each end user and recipient of this SDS to study it carefully. See also www.lincolnelectric.com/safety. If necessary, consult an industrial hygienist or other expert to understand this information and safeguard the environment and protect workers from potential hazards associated with the handling or use of this product. This information is believed to be accurate as of the revision date shown above. However, no warranty, expressed or implied, is given. Because the conditions or methods of use are beyond Lincoln Electric’s control, we assume no liability resulting from the use of this product. Regulatory requirements are subject to change and may differ between various locations. Compliance with all applicable Federal, State, Provincial, and local laws and regulations remain the responsibility of the user.

© 2018 Lincoln Global, Inc. All Rights Reserved.